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Abstract. We propose an algorithm for jointly performing registration point se-
lection and interactive, rigid, surface-based registration. The registration is com-
puted using a particle filter that outputs a sampled representation of the distribu-
tion of the registration parameters. The distribution is propagated through a point
selection algorithm derived from a stiffness model of surface-based registration,
allowing the selection algorithm to incorporate knowledge of the uncertainties in
the registration parameters. We show that the behavior of target registration error
improves as the quality measure of the registration points increases.

1 Introduction

One method of registering a patient to preoperative 3D medical images for use in image-
guided surgery is to digitize anatomical registration points and match them to surface
models derived from the images. A problem that has gone largely unexplored in this
framework is how to intraoperatively guide the surgeon to regions of the anatomy that
might contain good registration points.

A few selection algorithms have been described that could be applied to preoper-
atively choosing registration point sets. Simon [13] proposed to choose surface model
points that maximized the noise amplification index [11] of a 6 × 6 scatter matrix.
Gelfand et al. [2] used the condition number of Simon’s scatter matrix to optimize ICP
registration stability when aligning pairs of surfaces with significant overlap. Uniform
sampling of the sphere of normal vectors was proposed by Rusinkiewicz and Levoy
[12] as a method of point selection for registering pairs of range images. We [9] showed
that Simon’s scatter matrix was equivalent to the well known spatial-stiffness matrix of
an unactuated, kinematically unconstrained elastic mechanism; we proposed a point-
selection algorithm based on the coordinate frame invariant analysis of Lin et al. [8].

The problem with applying these kinds of selection algorithms to online guidance is
that they all attempt to optimize some criteria based on points and surface normals de-
fined in the model coordinate frame, but these features are uncertain during the course
of a registration. If the true registration was known, then the model features could be
inferred by finding the model points that corresponded to the patient registration points.
One possible solution is to use the current set of N patient points and a registration algo-
rithm to estimate the corresponding model points, and then use the selection algorithm
to suggest the next best model registration point. A possibly superior approach is to use
a registration algorithm that estimates the uncertainties of the registration parameters
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and propagates the uncertainties through the selection process. If the algorithm repre-
sents the uncertainties as a covariance matrix, for instance Lavallée et al. [7], then the
uncertainties can be propagated as a finite set of estimates of the registration parameters
using a technique such as the unscented transform of Julier and Uhlmann [6].

In this article we unify our point selection algorithm [9] with our sampling-based
registration algorithm [10] to produce a filter-selection algorithm that estimates the dis-
tribution of the registration parameters (instead of only the covariance) and computes
which regions of the model are likely to contain good registration points.

2 Stiffness-Based Point Selection

We [9] proposed an algorithm for sequentially constructing a set of model registration
points by greedily maximizing a quality measure derived from a stiffness model of
shape-based registration. Our approach considers the N registration points pi to be the
attachment locations for unloaded linear springs with orientations given by the surface
normal vectors ni. This configuration of springs leads to a stiffness relationship

w = Kt (1)
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where w is the wrench representing the reaction force and torque, and t is the twist
representing the applied linear and rotational displacement.

Simon [13] analyzed K by examining its singular values, which are not frame in-
variant and are not directly comparable to one another because rotational and transla-
tional displacements have differing units. Frame-invariant quantities, called the princi-
pal translational and rotational stiffnesses, can be calculated from K (Lin et al. [8]);
moreover, by considering a task-specific point target, the rotational stiffnesses can be
scaled so that they are directly comparable to the translational stiffnesses. The scaled
stiffnesses are called the equivalent rotational stiffnesses, and a stiffness quality mea-
sure is Q = min(µeq,1, µeq,2, µeq,3, σ1, σ2, σ3) where the µeq,i are the equivalent rota-
tional stiffnesses and the σi are the translational stiffnesses. Q characterizes the least
constrained displacement of the mechanism; maximizing Q will minimize the worst-
case displacement of the mechanism. Our algorithm [9] takes as input a set of N model
registration points pi with normal vectors ni and a surface model from which to se-
lect points. The quality measure Q is calculated and heuristics are used to find the
model point pN+1 that maximizes the increase in Q. At least six point/normal vec-
tor pairs are required by the selection algorithm because K does not have full rank
otherwise.

3 Distribution of Registration Parameters

We [10] proposed an algorithm that used a particle filter described by van der Merwe
et al. [15] to estimate the distribution of the registration parameters. The registration
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parameters are represented by a state vector xt = [θ φ δ dx dy dz]Tt where θ, φ, and
δ are the three rotation parameters, dx, dy, and dz are the three translation parameters,
and t is the time index equal to the current number of registration points processed. The
patient registration point acquired at time t is treated as a control input ut. The state
space model we used was

xt+1 = xt + N (0,Qt) (2)

yt =

⎡
⎢⎣
r(θt, φt, δt)(u1 + [dxt dyt dzt]T )

...
r(θt, φt, δt)(ut + [dxt dyt dzt]T )

⎤
⎥⎦ + N (0,Rt) (3)

Equation 2 is called the process model and it describes how the state evolves in one
time step; the model has a time-invariant state, except for the additive process noise,
because the registration state is constant. The zero-mean Gaussian process noise with
covariance Qt allows the filter to move from initial estimates of the state to succes-
sively better estimates. Qt is annealed towards 0 over time as the estimates become
better.

The observation model is given by Equation 3 where r(θt, φt, δt) is a rotation about
a remote center and [dxt dyt dzt]T is a translation vector. We use rotational param-
eters that surgeons are most familiar with, measured as order-independent angles of
rotation in the coronal, sagittal, and transverse planes. The form of the rotation matrix
r(θ, φ, δ) can be found in Iyun et al. [5]. In this article, we consider [dxt dyt dzt]T

to be the translation to a remote center of rotation. The model is simply the estimated
registration transformation applied to the patient registration points concatenated into a
single vector; the length of the vector at time t is 3t. We assume additive, zero-mean
Gaussian noise with covariance Rt; the noise is the displacement of each transformed
registration point to the surface of the model. Like the process noise covariance Qt, the
measurement noise covariance Rt must be annealed.

The output of the particle filter is a set of P equally weighted samples (particles)
representing the posterior distribution of the registration parameters. T o conserve space
in this article we refer the reader to the article by van der Merwe et al. [15] for details
on the mechanics of the specific particle filter we use. Note that the particle filter is not
restricted to using Gaussian noises.

3.1 Establishing an Initial Distribution

A prior distribution x0 needs to be specified for the particle filter. Strictly speaking,
the prior is supposed to be independent of the observations. A non-informative prior (a
uniform distribution over the 6-dimensional state space) is impractical because an un-
wieldy number of particles would be required to adequately sample the space. We take
a pragmatic approach and estimate an initial distribution using the first four registration
points. The first registration point is used to estimate the translation to a remote center
of rotation and the remaining three points are used to estimate the rotation. We assume
that each of the first four points comes from a predefined region of the accessible sur-
face of the bone. A small number of samples s1, s2, s3, and s4 are drawn from the four
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Fig. 1. Distributions of rotation parameters (θ, φ, and δ from left to right) obtained using the first
four registration points

regions and the patient registration points are registered to all s1 · s2 · s3 · s4 configura-
tions of model registration points. This sets the number of particles as P = s1 ·s2 ·s3 ·s4
and yields an initial distribution from which we can start the filter. The resulting dis-
tributions (see example in Figure 1) are surprisingly wide in the range of rotation
parameters.

4 A Unified Filter-Selection Algorithm

Our filter-selection algorithm uses the output of a particle filter registration algorithm to
propagate the distribution of registration parameters through a point selection process.
Each of the P registration estimates (particles) is applied to the set of patient registra-
tion points and the corresponding model points are inferred by performing a nearest
neighbor calculation; correspondences weighted by distance (for instance, [1], [3], or
[4]) could also be used. Each of the P sets of model correspondences is used as input
to the point selection algorithm that calculates the increase δQ in quality measure Q for
each of the M model points. This calculation requires O(PM) time and is the major
drawback of this algorithm. If we stored the distribution of δQ for each model point
then we would also require O(PM) storage; we compute only the mean increase ∆Q
for each model point which requires O(M) storage.

If we examine the model points with mean quality measure higher than a certain
value—for example, the 95th percentile—then what we find is that those model points
tend to come from one or more continuous regions of the model. This presents the sur-
geon with the task of locating any point inside a region, which is much easier than trying
to locate a single point. Examples of point-selection regions are shown in Figure 2. The
unified filter-selection algorithm is shown in Figure 3.

Fig. 2. Regions (in black) with mean quality measure greater than the 95th percentile after 7, 8, 9,
and 10 (from left to right) registration points have been processed using the algorithm described
in Figure 3
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– Digitize 6 registration points U so that the stiffness matrix K has full rank.
– For i = 6, 7, ..., N (main loop)

• Update the particle filter to obtain P registration samples {x1, ..., xP }.
• Initialize ∆Q[1..M ] = 0 where M is the number of model points. ∆Q[m] is the mean

increase in the quality measure for the mth model point, where the mean is calculated
over the P particles.

• For j = 1, 2, ..., P
∗ Apply the estimated registration transformation to U: Y = T(xj)U.
∗ Find the model points P closest to Y.
∗ Compute the quality measure Q of P.
∗ For k = 1, 2, ..., M

· pk = kth model point
· nk = normal vector at pk

· ∆Q[k] = ∆Q[k] + δQ(pk,nk)/P where δQ(pk,nk) is an approximation
of the increase in quality measure if point pk with normal nk is added to the
current set of estimated model registration points P; see [9] for details.

• Find the model points with ∆Q in the range [lo, hi ] (lo and hi might be the 95th and
100th percentiles, for example) defining regions on the model that contain good registra-
tion points. Digitize a patient point ui+1 corresponding to a point inside these regions.

• U = {U, ui+1}.

Fig. 3. A filter-selection algorithm

5 Materials and Methods

Bone-surface models of a distal radius, proximal femur, and proximal tibia were used
to validate the proposed filter-selection algorithm. The models were derived from CT
scans of patient volunteers. The surgically accessible area and a target were defined on
each model. These features are shown in Figure 4. Four regions were defined on each
phantom from where the initial four points needed to initialize the particle filter were
drawn from; an additional two large regions were defined on each phantom to yield the
requisite six points for the selection phase of the algorithm. The number of particles
used was 74 = 2401 for the radius and tibia, and 8 × 73 = 2744 for the femur. The
simulations were run on a PC with an AMD Athlon 2400 CPU and 256MB of RAM.

Registration simulations were run using each model with 200 trials, each trial ex-
ecuting the steps shown in Figure 5. The total number of registration points N was

distal radius proximal femur proximal tibia

Fig. 4. Features used in the experimental validation of integrated point selection and registration.
Accessible regions are shown in gray and targets are shown as cubes.
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1. Randomly select registration points from the six predefined regions; U = {u1,u1, ..., u6}.
2. Add Gaussian noise N (0, (0.35mm)2) to the x, y, and z components of the points in U.
3. Displace U by the inverse of the randomly selected registration transformation.
4. Calculate the initial state distribution (Section 3.1).
5. For i = 6..N

(a) Apply one iteration of the main loop of the filter-selection algorithm (Figure 3).
(b) Add Gaussian noise drawn from N (0, (0.35mm)2) to the new registration point ui+1

Fig. 5. Simulation steps for the experiment described in Figure 3

20. We took Qt to be uncorrelated with initial variances of (3◦)2 and (3mm)2 for the
rotational and translational components. We took Rt to be uncorrelated with initial
variances of (2mm)2 in each of the x, y, and z components of the observation vector.
Because we used a relatively small number of registration points, the annealing factors
were both chosen to be the relatively small value of 0.7 and we annealed for a total of
10 time steps. Three different ranges of [lo, hi ] were used to determine if point selec-
tion had an effect on registration precision and accuracy; the ranges used, in percentiles
of δQ, were [50, 55], [75, 80], and [95, 100]. The component-wise median of the filter
distribution was used as the estimate of the registration state.

6 Results

The mean of the 200 estimated registration states was within 0.2◦ in each of the true
rotation states, and within 0.1mm of the true translation states; this was true regardless
of the model used or the range of [lo, hi ]. This strongly suggests that there is no bias
in the filter estimates of registration. The standard deviations of the 200 estimated reg-
istration states are shown in Table 1 for each model and range of [lo, hi ]. There was
a trend towards decreasing variance as points that lead to increasing ∆Q values were
used. This is more clearly seen in Figure 6 which shows the distributions of target regis-
tration error (TRE). There was almost no difference in the distribution of TRE between
point sets with ∆Q values of [50, 55] and [75, 80]. There was clear improvement in TRE

Table 1. Standard deviations of the registration state parameters

Model [lo, hi ] θx θy θz tx ty tz

[50, 55] 0.57◦ 0.58◦ 1.57◦ 0.47mm 0.27mm 0.45mm
radius [75, 80] 0.50◦ 0.55◦ 1.55◦ 0.48mm 0.21mm 0.40mm

[95, 100] 0.38◦ 0.38◦ 1.22◦ 0.47mm 0.18mm 0.35mm
[50, 55] 0.95◦ 0.56◦ 1.32◦ 0.23mm 0.48mm 0.38mm

femur [75, 80] 0.70◦ 0.52◦ 1.22◦ 0.27mm 0.49mm 0.38mm
[95, 100] 0.87◦ 0.55◦ 0.91◦ 0.19mm 0.32mm 0.41mm
[50, 55] 1.59◦ 0.82◦ 1.05◦ 0.45mm 0.36mm 0.79mm

tibia [75, 80] 1.49◦ 0.87◦ 0.97◦ 0.47mm 0.40mm 0.64mm
[95, 100] 1.09◦ 0.71◦ 0.73◦ 0.34mm 0.32mm 0.51mm
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Distal radius Proximal femur Proximal tibia

Fig. 6. Distribution of target registration errors over 200 trials for each model and range of ∆Q
values [lo, hi ]

when using the highest range, [95, 100], of ∆Q values; however, the actual decrease in
expected TRE was very small. The computation time to process 20 registration points
was between two and three minutes on a relatively low-cost PC.

7 Discussion

Estimating the translation to a remote center of rotation appears to be an effective state-
space model for rigid registration. This produces a better initial distribution than the
random sampling approach taken in [10]; we used fewer particles and obtained more
accurate registrations. Granger and Pennec [3] noted that their EM-ICP registration al-
gorithm was most sensitive to errors in the translational component of the initial trans-
formation estimate. This appears to be true for the particle-filter registration method as
well. Figure 1 shows that the range of the rotation prior is at least 60◦ in each compo-
nent for the tibia model. If this observation is true in general, then the initial distribution
could be established using a single region to estimate the translation to the remote cen-
ter of rotation; the rotation parameters could be estimated by having the surgeon hold a
tracked target to approximately indicate the directions of the anatomic axes.

One feature of online point selection is that the surgeon is given a clear visualization
of where good registration points are likely located. This may be an advantage when
the surgeon has little experience performing registration, such as when attempting a
particular procedure for the first time, or during adoption of image-guided surgery.

Both the particle filter and the point-selection algorithm can exploit parallel compu-
tation, and this would be one way to provide integrated point selection at an acceptable
speed. A better approach might be to replace the particle filter with a more efficient type
of filter. In particular, the family of Gaussian mixture sigma-point particle (GMSPP) fil-
ters described by van der Merwe and Wan [14] are reportedly much more efficient in
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terms of computation than particle filters. These filters represent the posterior using a
Gaussian mixture model. Because there is a deterministic way to draw a small number
of samples from a Gaussian distribution (for example, see Julier and Uhlmann [6]) that
preserves all of the relevant information, only a small number of particles might need
to be considered during point selection if a GMSPP filter is used.

This work shows that it is possible unify surface-based registration, optimal selec-
tion of the next point from the patient’s anatomy, and estimation of the uncertainty in
the resulting registration. Optimization of the algorithm will bring it into the timeframe
required in orthopedic surgery. Extensions to this work might include application to de-
formable atlas-based registration and to volumetric registration of one image to another.
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